
IBM VisualAge PL/I for OS/390 IBM

Compiler and Run-Time Migration Guide
Version 2 Release 2.1

 SC26-9474-02

IBM VisualAge PL/I for OS/390 IBM

Compiler and Run-Time Migration Guide
Version 2 Release 2.1

 SC26-9474-02

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix, “Notices” on page 37.

Second Edition (September 2000)

This edition applies to Version 2 Release 2.1 of &prodva. for OS/390, part number 04L7217; and to any subsequent releases until
otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department BWE/H3
P.O. Box 49023
San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 International Business Machines Corporation 1998,2000. All rights reserved.

 Contents

Chapter 1. Introduction . 1
Run-time environment for VisualAge PL/I . 1
Using your documentation . 2

Chapter 2. Installation considerations . 3
Product information . 3
Considerations for using assembler user exits . 4

Specific considerations . 4
Considerations for using high-level language user exits 4

Chapter 3. Compile-time considerations . 5
Mixing Object Levels . 5
Dependency on Language Environment . 5
Compile-time options not supported by VisualAge PL/I 6
Compatibility considerations and restrictions . 6

OS PL/I Version 1 source code . 6
ENTRY statement . 7
Array expressions . 7
Structure expressions . 8
DEFINED variables . 8
DBCS . 8
Stream I/O . 8
Record I/O . 9
Built-in functions . 9
Batch compilations . 9
Miscellaneous unsupported elements . 10

Storage report changes . 10
Compiler messages . 10
Messages that PL/I issues for errors in the PLIXOPT string 10

Chapter 4. Link-edit considerations . 12
Using FETCH in your routines . 12
Using PLICALLA or PLICALLB entry . 12
ENTRY CEESTART requirement . 12

Chapter 5. Run-Time Considerations . 13
Differences in PLICALLA and PLICALLB Support 13

PLICALLA considerations . 13
PLICALLB considerations . 14

Differences in preinitialization support . 16
Differences in DATE/TIME built-in functions . 16
Differences in user return codes . 17
Differences in Condition Handling . 17
Differences in run-time messages . 19
Differences in PLIDUMP . 20
Differences in run-time options . 21
Differences in storage report . 22
Differences in interlanguage communication support 22
Differences in assembler support . 23
Differences in language element behavior . 24

 Copyright IBM Corp. 1964, 2000 iii

Differences in Descriptor Format . 25
Differences in AMODE(24) Support . 25

Chapter 6. Tuning your VisualAge PL/I program 26
Improving CPU utilization . 26
Improving storage utilization . 27
Improving performance under subsystems . 27

Chapter 7. Subsystem considerations . 29
CICS considerations . 29

Updating CICS System Definition (CSD) file 29
Macro-level interface . 29
SYSTEM(CICS) compile-time option . 29
FETCHing a PL/I MAIN procedure . 30
STACK run-time option . 30
Run-time output . 30
Abend codes used by PL/I under CICS . 30
Linking VisualAge PL/I applications . 30

IMS considerations . 30
Interfaces to IMS . 31
SYSTEM(IMS) compile-time option . 31
PLICALLA Support in IMS . 31
PSB language options supported . 31
Assembler driving a PL/I transaction . 32
Storage usage considerations . 32
Coordinated condition handling under IMS . 32
Performance enhancement with Library Retention(LRR) 33

DB2 considerations . 33

Chapter 8. OS PL/I coexistence with Language Environment 34
Coexistence under OS/390 non-CICS . 34
Coexistence under OS/390 CICS . 35
Coexistence under DB/2 . 36

Appendix. Notices . 37
Programming interface information . 38
Trademarks . 38

Bibliography . 39

Bibliography . 40
VisualAge PL/I publications . 40
DB2 Version 2 . 40
DATABASE 2 . 40
VisualAge CICS Enterprise Application Development 40

Index . 41

iv Compiler and Run-Time Migration Guide

 Chapter 1. Introduction

This book contains information to help you migrate applications from previous
releases of PL/I to VisualAge PL/I and OS/390 Language Environment. It suggests
solutions to problems that arise because of differences in support between previous
releases of PL/I (OS PL/I and PL/I for MVS & VM) and VisualAge PL/I.

If you need information on support issues for previously compiled PL/I programs,
see PL/I for MVS & VM Compiler and Run-Time Migration Guide.

Note: There is no VM support for IBM VisualAge PL/I for OS/390.

 IMPORTANT

The information in this book discusses migration considerations using VisualAge
PL/I V2R2M1 and OS/390 V2R8 Language Environment or later. These two
products must be installed in order to take advantage of the migration
enhancements discussed in this book. The use of VisualAge PL/I will always
refer to Version 2 Release 2.1 unless indicated otherwise. The use of
Language Environment will always refer to OS/390 V2R8 Language
Environment or later unless indicated otherwise.

This book is for system programmers, application programmers, and IBM support
personnel who are involved in PL/I product migration. Prerequisite knowledge for
using this book is:

� A general understanding of your operating system
� Some knowledge of the PL/I language and options
� Some knowledge of how PL/I uses Language Environment for its run-time

environment

Run-time environment for VisualAge PL/I
VisualAge PL/I uses Language Environment as its run-time environment. It
conforms to Language Environment architecture and shares the run-time
environment with other conforming languages such as C/370, C/C++, COBOL, and
Fortran.

Language Environment is the common run-time environment for the following
language compilers:

 C/370
 C/C++

COBOL for MVS & VM
COBOL for OS/390 & VM

 Fortran
PL/I for MVS & VM

 VisualAge PL/I

It provides a common set of run-time options and callable services. It also
improves interlanguage communication (ILC) between high-level languages (HLL)
and assembler by eliminating language-specific initialization and termination on
each ILC invocation. Language Environment provides compatibility support for
existing applications with a few restrictions.

 Copyright IBM Corp. 1964, 2000 1

Using your documentation
The publications provided with VisualAge PL/I are designed to help you program
with PL/I. The publications provided with Language Environment are designed to
help you manage your run-time environment for applications generated with
VisualAge PL/I. Each publication helps you perform a different task.

The following tables show you how to use the publications you receive with
VisualAge PL/I and Language Environment. You'll want to know information about
both your compiler and run-time environment. For the complete titles and order
numbers of these and other related publications, see “Bibliography” on page 40.

 PL/I information
Table 1. How to use VisualAge PL/I publications

To... Use...

Evaluate VisualAge PL/I Fact Sheet

Understand warranty information Licensed Programming Specifications

Plan for and install VisualAge PL/I VisualAge PL/I Program Directory

Understand compiler and run-time changes and
adapt programs to VisualAge PL/I and Language
Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference

Diagnose compiler problems and report them to IBM Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment information
Table 2. How to use OS/390 Language Environment publications

To... Use...

Evaluate Language Environment Concepts Guide

Plan for Language Environment Concepts Guide
Run-Time Migration Guide

Install Language Environment on OS/390 OS/390 Program Directory

Customize Language Environment on OS/390 Customization

Understand Language Environment program models
and concepts

Concepts Guide
Programming Guide

Find syntax for Language Environment run-time
options and callable services

Programming Reference

Develop applications that run with Language
Environment

Programming Guide and your language
Programming Guide

Debug applications that run with Language
Environment, get details on run-time messages,
diagnose problems with Language Environment

Debugging Guide and Run-Time Messages

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Applications

Migrate applications to Language Environment Run-Time Migration Guide and the migration
guide for each Language Environment-enabled
language

2 Compiler and Run-Time Migration Guide

 Chapter 2. Installation considerations

This chapter contains product information you need to know at installation time. It
discusses differences in user exits and effects of Language Environment Abnormal
Termination Exit.

The Language Environment run-time options that you might want to consider at
installation time are described in “Differences in run-time options” on page 21.

 Product information
VisualAge PL/I has renamed its parts so that, if you want to, you can install it in the
same SMP/E zone as OS PL/I. To help you identify the elements of each product,
the following table lists the name differences:

Language Environment must be available before you can compile, prelink, link-edit,
and run a VisualAge PL/I application. If you attempt to compile a program before
installing Language Environment, the program will not compile and a message will
be generated. A STEPLIB concatenation for SCEERUN must be added in the
compile. The details of the data sets and modules shipped with VisualAge PL/I and
Language Environment can be found in one of the documents listed below. If you
want to know the names of the data sets and modules, storage requirements, or
other details specifically for installation planning, refer to one of these documents:

VisualAge PL/I Program Directory
OS/390 Program Directory
OS/390 V2R8 Language Environment Customization

There are additional requirements you need to be aware of before you begin to use
VisualAge PL/I and Language Environment.

You must have access to Language Environment when you compile your VisualAge
PL/I application. When you compile your application and you use existing JCL, be
sure your STEPLIB or JOBLIB statement includes SCEERUN (Language
Environment run-time library). You can use the IBMZC cataloged procedure to
compile PL/I applications.

Your compile step should include the following:

//PLI EXEC PGM=IBMZPLI,REGION=512K
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR

Table 3. PL/I element names

OS PL/I PL/I for MVS & VM VisualAge PL/I

IEL0AA IEL1AA IBMZPLI

IKJEN00n IEL1IKJn

IEL0nn IEL1nn IBMZnn

PLInnnnn IEL1Mnnn IBMZMnnn

PLIXnnn IEL1nnn IBMZnnn

PLIHELP IEL1PLIH IBMZPLIH

 Copyright IBM Corp. 1964, 2000 3

Reading about the cataloged procedures provided with VisualAge PL/I can help you
understand the use of SCEERUN during compilation. “Using PL/I Cataloged
Procedures” is a chapter in VisualAge PL/I for OS/390 Programming Guide.

When you link-edit your VisualAge PL/I application with Language Environment and
you use existing JCL, be sure your SYSLIB statement includes SCEELKED
(Language Environment link-time library). Language Environment also provides the
SIBMCAL2 library to which you can link specific PL/I functions and compatibility
support. You can use this library as long as it is specified before SCEELKED.

You must specify SYSLIB if you plan to use it. Do not include SYSLIB unless you
are using a LINKLIB which already includes SCEELKED.

Considerations for using assembler user exits
The only Assembler user exit supported by VisualAge PL/I is the Language
Environment user exit CEEBXITA. IBMBXITA and IBMFXITA are not supported.
For a detailed parameter description for CEEBXITA, see OS/390 Language
Environment Programming Guide..

 Specific considerations
� The PL1DUMP, PLIDUMP or CEEDUMP file for the dump output is treated as

a process resource and must not be cleared during enclave termination.

� The OS PL/I abend exit IBMBEER is ignored under Language Environment.
See “Differences in Condition Handling” on page 17 for forcing an abend under
Language Environment.

For more information on assembler language user exits, see OS/390 Language
Environment Programming Guide..

Considerations for using high-level language user exits
The OS PL/I Version 2 High-Level Language (HLL) user exit IBMBINT is not
supported. VisualAge PL/I MAIN load module supports only CEEBINT. The load
module always contains a copy of CEEBINT, either the application-specific one or
the default one provided by Language Environment.

If you write CEEBINT in PL/I, you must write it in VisualAge PL/I. If CEEBINT calls
any PL/I routines, those routines must also be written in VisualAge PL/I.

Do not use the OPTIONS(MAIN) statement in the PL/I HLL user exit.

The STOP statement terminates the application.

4 Compiler and Run-Time Migration Guide

 Chapter 3. Compile-time considerations

This chapter describes compile-time consideration when your run-time environment
is Language Environment. You'll find out what OS PL/I Version 1 source code is
supported in VisualAge PL/I. Also discussed are the changes affecting compiler
messages.

The major factors to consider before migrating to VisualAge PL/I are:

� There is no VM support.

� Consider recompiling your OS PL/I and PL/I for MVS & VM applications with
VisualAge PL/I. Support for combining object and load modules from previous
PL/I releases with VisualAge PL/I object is limited.

� Multitasking is not supported; however, multithreading is supported.

� There is no support for compiles under TSO.

Mixing Object Levels
Support for mixing objects produced by VisualAge PL/I and previous versions in a
single application is limited. If you attempt to mix old and new objects, it is strongly
recommended that you use the following compiler options:

� CMPAT(V2) (or CMPAT(V1) if your old code was compiled with that)

� DEFAULT(LINKAGE(SYSTEM))

� LIMITS(EXTNAME(8))

 � NORENT

The CMPAT(V2) (or CMPAT(V1)) option is also needed where a string, array or
structure is passed to or received from non-PL/I code. This occurs, for example,
when a DB2 stored procedure written in PL/I is passed a string.

The following are not supported:

 � shared files

� shared controlled variables

� shared entry variables unless the NORENT compiler option is used

� passing structures or arrays unless the CMPAT(V1) or the CMPAT(V2)
compiler option is used

Dependency on Language Environment
Language Environment must be available whenever you compile a PL/I application.
Language Environment is the run-time environment for the VisualAge PL/I compiler.

 Copyright IBM Corp. 1964, 2000 5

Compile-time options not supported by VisualAge PL/I
VisualAge PL/I does not support the following compile-time options:

CONTROL NOINCLUDE
DECK SEQUENCE
ESD SIZE
FLOW SMESSAGE
LMESSAGE

The following compile-time options have had the indicated suboptions dropped:

LANGLVL NOSPROG/SPROG (SPROG is always in effect)
LIST m,n
SYSTEM CMS, CMSTPL

The meaning of the following compile-time options has changed:

INCLUDE The old meaning of INCLUDE (enabling %INCLUDE
statements without use of the macro preprocessor) is always
in effect in VisualAge PL/I. The new INCLUDE option is
used under OS/390 UNIX System Services to help the
compiler find the right include file.

OFFSET This option no longer produces an offset table in the listing,
instead, this option determines how offsets are presented in
the listing: NOOFFSET produces offsets from the compile
unit, and OFFSET produces offsets from the procedure.

Compatibility considerations and restrictions
There are some behavioral differences between the VisualAge PL/I compiler and
previous PL/I compilers. As a result, the VisualAge PL/I compiler imposes some
restrictions or may produce different results than when using source code created
for OS PL/I or PL/I for MVS & VM. These differences are described in the following
sections.

OS PL/I Version 1 source code
VisualAge PL/I compatibility with OS PL/I Version 1 source code is supported with
the following exceptions:

� CHARSET(48) and CHARSET(BCD) are no longer supported. Support for
these options were dropped by OS PL/I Version 2; however, there is an
IBM-supplied tool that will convert the source.

� Graphic DBCS varies slightly from old EGCS in that the shift-in and shift-out
code points are fixed.

� Suffixes that follow string constants are not replaced by the
preprocessor—whether or not these are legal PL/I suffixes—unless you insert a
delimiter between the ending quotation mark of the string and the first letter of
the suffix. For example:

6 Compiler and Run-Time Migration Guide

%DCL (GX, XX) CHAR;
%GX='||FX';
%XX='||ZZ';
DATA = 'STRING'GX;
DATA = 'STRING'XX;
DATA = 'STRING' GX;
DATA = 'STRING' XX;

under Version 1 produces the source:

DATA = 'STRING'||FX;
DATA = 'STRING'||ZZ;
DATA = 'STRING' ||FX;
DATA = 'STRING' ||ZZ;

whereas, under VisualAge PL/I it produces:

DATA = 'STRING'GX;
DATA = 'STRING'XX;
DATA = 'STRING' ||FX;
DATA = 'STRING' ||ZZ;

� CHECK statement, CHECK prefix, and CHECK condition support was dropped
by PL/I for MVS & VM.

 ENTRY statement
The ENTRY statement is supported with the following restrictions:

� All parameters must be BYADDR. The default compiler options will force this
action.

� RETURNS must be BYADDR if an aggregate. The default compiler options will
force this action.

� Return value, if any, will be converted to the attributes in the most recent
PROC or ENTRY statement with a RETURNS option.

The following example shows how returns value might be converted:

a: proc; /, return value is undefined ,/
b: entry returns(fixed bin); /, return value converted to fixed bin ,/
c: entry; /, return value converted to fixed bin ,/
d: entry returns(fixed dec); /, return value converted to fixed dec ,/

end;

 Array expressions
An array expression is not allowed as an argument to user functions unless it's an
array of scalars of known length.

The following example shows numeric array expressions supported in calls:

dcl x entry, (y(1:),z(1:)) fixed bin(31);

call x(y + z);

The following unprototyped call would be flagged since it requires a string
expression of unknown size:

 Chapter 3. Compile-time considerations 7

dcl a1 entry;
dcl (b(1:),c(1:)) char(2:) var;

call a1(b || c);

However, the following prototyped call would not be flagged:

dcl a2 entry(char(3:) var);
dcl (b(1:),c(1:)) char(2:) var;

call a2(b || c);

 Structure expressions
Structure expressions are supported in assignment statements, including BY NAME
assignments, with the following exceptions:

� Structure expressions as arguments are not supported unless both of the
following conditions are true:

– There is a parameter description.
– The parameter description specifies all constant extents.

 DEFINED variables
Support for iSUB defining is limited to arrays of scalars.

Simple DEFINED variables are supported only for the following:

 � Scalars

� Structures with constant extents matching those in the base variable

� Arrays of such scalars and structures as long a the array is not based on a
controlled variable

When simple defining does not apply, string-overlay defining is assumed and
flagged with an E-level message (as is true with PLIOPT).

 DBCS
DBCS can be used only in the following:

� G and M constants
 � Identifiers
 � Comments

G literals can start and end with a DBCS quote followed by either a DBCS G or an
SBCS G.

 Stream I/O
Stream I/O is supported with the following restrictions:

� For PUT/GET DATA, the following restrictions apply:

– DEFINED variables are not supported if the DEFINED variable is BIT or
GRAPHIC or has a POSITION attribute.

– DEFINED variable is not supported if its base variable is an array slice or
an array with a different number of dimensions than the defined variable.

8 Compiler and Run-Time Migration Guide

 Record I/O
Record I/O is supported with the following exceptions:

� EVENT clauses on READ/WRITE are not supported.

� UNLOCK statement is not supported.

� The BACKWARDS file attribute is not supported.

 Built-in functions
Built-in functions are supported with the following exceptions/restrictions:

� The PLITEST built-in function is not supported.

� Pseudovariables are not supported in:

– The STRING options of PUT statements

� Pseudovariables in DO loops are restricted to:

 – IMAG
 – REAL
 – SUBSTR
 – UNSPEC

� The POLY built-in function has the following restrictions:

– The first argument must be REAL FLOAT.
– The second argument must be scalar.

� The COMPLEX pseudovariable is not supported.

 Batch compilations
Compilation is not performed in PROCESS-delimited chunks and the following
results occur:

� Options on later sets of PROCESS statements are ignored
� One TEXT deck or .o is produced
� One listing file with one set of messages is produced
� External variables with the same name must match

The following example demonstrates a batch compilation. In this case, the
mismatches in b and x would be flagged.

 Chapter 3. Compile-time considerations 9

 ,process opt(:);

 a: proc;
dcl b ext entry(1,2 char(2), 2 char(2));

 dcl
1 x ext,
2 x1a char(2),
2 x1b char(2);

 call b(x);
 end;

 ,process opt(2);

 b: proc(p);
dcl p pointer;

 dcl
1 x ext,
2 x1a bit(16),
2 x1b bit(16);

 end;

Miscellaneous unsupported elements
The following miscellaneous elements are not supported:

� NOMAP, NOMAPIN, and NOMAPOUT are accepted but ignored, even if
parmlist/arguments are given.

Storage report changes
The PLIXHD variable is no longer used as the heading in storage reports. The
identifier PLIXHD is no longer reserved; you can declare it and use it as you would
declare and use any other variable.

 Compiler messages
The messages issued by the VisualAge PL/I compiler are completely different from
messages issued by previous PL/I compilers. For detailed descriptions of
messages produced by VisualAge PL/I, see VisualAge PL/I Compile-Time
Messages and Codes.

Messages that PL/I issues for errors in the PLIXOPT string
The PLIXOPT variable is a varying-length character string that contains run-time
options you can specify at compile time. The messages that the compiler produces
to diagnose errors in these options have changed. In most cases, the PL/I
messages now list an associated Language Environment message that you should
read for more information about the error.

PL/I parses the PLIXOPT string and produces the Language Environment
CEEUOPT CSECT. If you explicitly include CEEUOPT in your recompiled
application ahead of the compiler-generated CEEUOPT CSECT, the explicitly

10 Compiler and Run-Time Migration Guide

included CEEUOPT CSECT overrides the one generated by the compiler for the
options specified in the PLIXOPT string.

 Chapter 3. Compile-time considerations 11

 Chapter 4. Link-edit considerations

This chapter describes factors you must consider when you link-edit an object
module produced by VisualAge PL/I.

Important: If you link text decks using the binder, you must place the output into a
PDSE file. To use a PDS file, the prelinker must be used. But for all new
styles objects, must either be all prelinked together to the PDS file or using
the binder to place into the PDSE file. For more information about linking,
see VisualAge PL/I for OS/390 Programming Guide, in the chapter titled
'Link-editing and Running.'

Using FETCH in your routines
You can FETCH VisualAge PL/I routines, OS/390 C DLLs, and Assembler routines
except for the following restrictions:

� If PL/I is fetching another VisualAge PL/I routine, it must not specify
OPTIONS(ASM) or OPTIONS(COBOL) in the declaration of that ENTRY;
however, if it is fetching a COBOL or Assembler routine, then it should specify
OPTIONS(COBOL) or OPTIONS(ASM), respectively.

� OPTIONS(FETCHABLE) must be specified on the PROCEDURE statement for
the entry point of the DLL.

� PROCEDURE statements for a non-CICS program specifying
OPTIONS(FETCHABLE) must be linked as a DLL. DYNAM=DLL must be
specified when linking a fetchable module into a DLL. The ENTRY name in the
linkage editor control statements should be specified as the fetched program's
name.

For a detailed description of these restrictions, see VisualAge PL/I for OS/390
Programming Guide, in the chapter titled 'Link-editing and Running.'

Using PLICALLA or PLICALLB entry
For VisualAge PL/I programs that use PLICALLA or PLICALLB as the main entry
point, link-edit the object modules with the SIBMCAL2 dataset in front of the
SCEELKED dataset. See “PLICALLA considerations” on page 13 and “PLICALLB
considerations” on page 14 for details.

ENTRY CEESTART requirement
If a VisualAge PL/I or PL/I for MVS & VM main procedure is link-edited with object
modules produced by other language compilers or by assembler, and is the first
module to receive control, the user must ensure that the entry point of the resulting
executable program is resolved to the external symbol CEESTART. This happens
automatically if the VisualAge PL/I or PL/I for MVS & VM main procedure is first in
the input to the linkage editor. Run-time errors occur if the executable program
entry point is forced to some other symbol by use of the linkage editor ENTRY
control statement.

12 Copyright IBM Corp. 1964, 2000

 Chapter 5. Run-Time Considerations

Before you migrate to Language Environment or VisualAge PL/I, you should read
this chapter. It discusses the functional differences between previous PL/I
compilers and VisualAge PL/I and its run-time environment Language Environment.
These differences should be considered before you install Language Environment
or VisualAge PL/I. Other chapters in this book discuss differences you must
consider during and after installation.

Factors to consider before migrating to VisualAge PL/I are:

� There is no support for IBMBSIR or IBMBHKS.

� There is no support for multitasking.

It is possible to install Language Environment together with the OS PL/I library. If
you'd like to know more about this topic, see Chapter 8, “OS PL/I coexistence with
Language Environment” on page 34.

Differences in PLICALLA and PLICALLB Support
The interfaces in the following sections are not recommended for use in VisualAge
PL/I. They are supported only for compatibility reasons.

 PLICALLA considerations
Language Environment provides support for VisualAge PL/I applications that use
the PLICALLA entry point. It also provides support for recompiled OS PL/I and PL/I
for MVS & VM applications that want to continue to use PLICALLA as the primary
entry point. When you recompile your OS PL/I or PL/I for MVS & VM program with
VisualAge PL/I, there is no need to INCLUDE Language Environment-provided
PLISTART CSECT when you link your main load module. You just need to make
sure the SIBMCAL2 dataset is concatenated in front of the SCEELKED dataset. If
you don't do this, the linkage editor or loader issues an error message for an
unresolved ENTRY PLICALLA statement.

You can also use PLICALLA as the primary entry point of a FETCHed/CALLed
main load module; however, the calling routine must pass only user arguments
which are passed to a subroutine. If run-time options are passed, they are treated
as user arguments.

If you develop a new application in VisualAge PL/I and you want the main
procedure to receive user arguments like a subroutine, do one of the following:

� Receive control directly from IMS by:

– Using CEESTART as the primary entry point of the load module.

– Specifying the SYSTEM(IMS) compile-time option.

� Receive control from an assembler program or a procedure using a FETCH or
CALL statement by:

– Using CEESTART as the primary entry point of the load module.

– Specifying the NOEXECOPS option and the SYSTEM(MVS) compile-time
option.

 Copyright IBM Corp. 1964, 2000 13

– Specifying either the BYADDR option or the BYVALUE option.

Language Environment support of PLICALLA is not available in the following
environments:

 CICS environment
 Preinitialized environment

Nested enclave environment except the PL/I FETCHable main.

 Passing parameters
OPTIONS(BYADDR) passes the argument indirectly by reference and is the usual
argument-passing convention. VisualAge PL/I also provides OPTIONS(BYVALUE)
which passes arguments directly by value.

If the main procedure is recompiled with VisualAge PL/I using SYSTEM(CICS|IMS),
only POINTER data type can be passed as parameters. If a main procedure
receives control from assembler via PLICALLA and is recompiled with VisualAge
PL/I, the main procedure cannot be compiled with SYSTEM(CICS|IMS).

Table 4 provides the expected argument passing convention (either BYADDR or
BYVALUE) when the main procedure of your OS PL/I PLICALLA application is
recompiled with VisualAge PL/I:

Table 4. Parameter passing for the main procedure compiled with VisualAge PL/I

System environment

Invoked from IMS1

Invoked from
assembler
program2

Invoked by PL/I
FETCH/CALL
Statement2

SYSTEM(MVS) BYADDR BYADDR BYADDR

SYSTEM(CICS) BYVALUE3 Not supported Not supported

SYSTEM(IMS) BYVALUE3 Not supported Not supported

SYSTEM(TSO) BYADDR BYADDR BYADDR

1LANG=PL/I must be specified and it passes indirect by reference.
2It must have already passed indirect by reference or by value.
3PL/I library will convert the argument list to direct by value.

 PLICALLB considerations
Language Environment provides support for recompiled OS PL/I or PL/I for MVS &
VM PLICALLB applications that continue to use PLICALLB as the primary entry
point. The following list shows the PLICALLB parameter mapping for Language
Environment:

� Address of argument list (argument must either point to an address or be zero)

� Address of the length of ISA storage mapped to STACK(init_size)

� Address of ISA storage used as the initial STACK segment

� Address of the options word in which the run-time options for a program are
specified. These options are: RPTSTG, TRAP,
HEAP(,,KEEP|FREE)|(,,ANY|BELOW). The hexadecimal value for each option
is defined as follows in the assembler program:

14 Compiler and Run-Time Migration Guide

OPTIONS DC AL1(RPTSTG+TRAP,FREEHEAP+ANYHEAP,:,:)
,
RPTSTG EQU X'8:'
RPTSTGOFF EQU X'4:'
TRAP EQU X'2:'
TRAPOFF EQU X'1:'
,
KEEPHEAP EQU X'2:'
FREEHEAP EQU X'1:'
ANYHEAP EQU X':8'
BELHEAP EQU X':4'

� Address of HEAP storage length for a program is mapped to HEAP(init_size)

� Address of HEAP storage is used as the initial HEAP segment

� Address of HEAP increment for a program is mapped to HEAP(,incr_size)

� Address of ISA increment for a program is mapped to STACK(,incr_size)
(optional) is mapped to NONIPTSTACK(,incr_size)

When the above argument list is passed in via the PLICALLB entry point, the
argument in the list must either point to an address or be zero. The hight-order bit
of an argument must be ON to indicate the end of the argument list. R1 must
contain the address of the argument list.

With Language Environment, the run-time options passed via the PLICALLB entry
point are processed as options specified on invocation of the application and have
a higher precedence than CEEUOPT or PLIXOPT options. The assembler user
exit cannot be used to alter the run-time options passed through the PLICALLB
invocation.

To summarize, the run-time options passed in have the following precedence (from
highest to lowest) among Language Environment option specification methods:

1. Options specified via the PLICALLB entry point
2. Options specified in the PLIXOPT string or in CEEUOPT

The user arguments passed to the PL/I main routine have the following precedence
(from highest to lowest):

1. Output from CXIT_PARM or AUE_PARM of the assembler user exit
2. User arguments passed in via the PLICALLB entry

Note: The input to CXIT_PARM or AUE_PARM of the assembler user exit is the
first argument in the PLICALLB parameter list; that is, the address of a
vector of user argument addresses.

Language Environment encourages the use of above-16M-line storage. For
compatibility with OS PL/I, Language Environment maps the user-supplied ISA and
HEAP storage to STACK and HEAP. With this mapping, however, Language
Environment still needs to issue some GETMAINs. Since user-supplied ISA/HEAP
storage is usually below the 16M line, below-16M-line storage can be quickly
consumed under Language Environment. How Language Environment manages
storage is described in the OS/390 Language Environment Programming Guide.

Language Environment manages storage differently than OS PL/I. It divides
storage into more categories than the OS PL/I-supported ISA and HEAP.

 Chapter 5. Run-Time Considerations 15

Language Environment allocates below-16M-line storage using the init_sz24 and
incr_sz24 suboptions specified in the HEAP option.

When you develop new applications in VisualAge PL/I and want to pass both
run-time options and arguments to a PL/I main procedure, especially to provide
user-supplied stack and heap storage from an assembler program, take advantage
of Language Environment's preinitialization support as described in OS/390
Language Environment Programming Guide.

Language Environment support of PLICALLB is not available in the following
environments:

 CICS
 IMS
 Preinitialized environment

Nested enclave environment

 Passing parameters
OPTIONS(BYADDR) passes the argument indirectly by reference and is the usual
argument-passing convention. VisualAge PL/I also provides OPTIONS(BYVALUE)
which passes arguments directly by value.

You must use the BYADDR option when you want to pass parameters using
PLICALLB. PLICALLB is invoked from assembler which passes the argument list
indirectly by reference.

Table 5 provides the expected argument passing convention (either BYADDR or
BYVALUE) when the main procedure of your OS PL/I PLICALLB application is
recompiled with VisualAge PL/I:

Table 5. Parameter passing for the main procedure compiled with VisualAge PL/I

System environment Invoked from assembler program1

SYSTEM(MVS) BYADDR

SYSTEM(CMS|CMSTPL) BYADDR

SYSTEM(CICS) Not supported

SYSTEM(IMS) Not supported

SYSTEM(TSO) BYADDR

1It passed the argument list required by the PLICALLB entry.

Differences in preinitialization support
The PL/I preinitialized program interface is not supported for VisualAge PL/I
applications. Use the Language Environment preinitialization service as described
in the OS/390 Language Environment Programming Reference.

Differences in DATE/TIME built-in functions
The DATETIME and TIME built-in functions now return the number of milliseconds
in all environments. The syntax and description of these built-in functions are in the
VisualAge PL/I for OS/390 PL/I Language Reference.

16 Compiler and Run-Time Migration Guide

Differences in user return codes
VisualAge PL/I and Language Environment support a FIXED BIN(31) four-byte user
return code value for PLIRETC, PLIRETV, and OPTIONS(RETCODE). This
support removes the restriction of maximum value 999.

The following table shows how PL/I user return code is supported:

For PLIRETC, VisualAge PL/I and relinked OS PL/I load modules can set a 4-byte
user return code value.

For PLIRETV and RETCODE, only VisualAge PL/I load modules can receive a
4-byte user return code value.

Under Language Environment, the PL/I user return code is always reset to zero
upon return from the PLISRTx invocation. This is not the case with OS PL/I
run-time.

Table 6. Return code behavior under Language Environment

Function

OS PL/I
load module

OS PL/I object module
linked with
Language Environment

VisualAge PL/I
load module

PLIRETC
built-in function

2-byte value with
restriction of 999

4-byte value without
restriction of 999

4-byte value without
restriction of 999

PLIRETV
built-in function

2-byte value Lower 2 bytes of a
4-byte value

4-byte value

RETCODE option Lower 2 bytes of R15 Lower 2 bytes of R15 2-byte value

Differences in Condition Handling
PL/I condition handling semantics remain supported under Language Environment;
however, the timing of issuing the run-time message for an ERROR condition with
respect to the ERROR ON-unit is different in the following way:

� The run-time message for an ERROR condition is issued only if there is no
ERROR ON-unit established, or if the ERROR ON-unit does not recover from
the condition by using a GOTO out of the ERROR ON-unit. Thus you can use
a GOTO out of the ERROR ON-unit to avoid a message for a PL/I ERROR
condition.

For other PL/I conditions whose implicit action includes printing a message and
raising the ERROR condition, the message is issued before control is given to an
established ERROR ON-unit.

Table 7 on page 18 shows when the run-time message for an ERROR condition
is issued under OS PL/I with respect to the ERROR ON-unit.

 Chapter 5. Run-Time Considerations 17

Table 8 shows when the run-time message for an ERROR condition is issued
under Language Environment with respect to the ERROR ON-unit.

The SNAP traceback message produced by ON ERROR SNAP continues to be
issued before the ERROR ON-unit receives control. The SNAP traceback message
is not identical to the regular ERROR message.

Some program return code modifiers have changed under Language Environment,
depending upon what compiler was used. The behaviors are:

� OS PL/I V2R3:

A return code of 2000 is added for the case where the ERROR condition is
raised and the program terminates without returning from an ERROR or FINISH
ON-unit.

� VisualAge PL/I and PL/I for MVS & VM:

A return code of 3000 is added for severity 3 conditions (severe
error—abnormal termination).

Most PL/I conditions are severity 3, with the following severity 1 exceptions:
ENDPAGE, FINISH, NAME, PENDING, STRINGRANGE, STRINGSIZE,
UNDERFLOW, ATTENTION signaled, CONDITION signaled.

Note: This information is useful when using the Language Environment
ERRCOUNT run-time option.

If your OS PL/I application used to force an abend for an unhandled condition
under OS PL/I run-time using OS PL/I assembler user exit IBMBXITA or abend exit
IBMBEER, use the following ways to force an abend under Language Environment:

Table 7. OS PL/I Version 2 Release 3 ERROR ON-unit and message for an ERROR
condition

Condition

No ON-units

ERROR ON-unit No
GOTO

ERROR ON-unit GOTO

ERROR condition raised1 Message Message prior to
ON-unit

Message prior to ON-unit

ZERODIVIDE condition
raised2

Message Message prior to
ON-unit

Message prior to ON-unit

Notes:

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR condition
is raised.

Table 8. Language Environment ERROR ON-unit and message for an ERROR condition

Condition

No ON-units

ERROR ON-unit No
GOTO

ERROR ON-unit GOTO

ERROR condition raised1 Message Message after
ON-unit

No message

ZERODIVIDE condition
raised2

Message Message prior to
ON-unit

Message prior to ON-unit

Notes:

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR condition
is raised.

18 Compiler and Run-Time Migration Guide

� Run your application with the Language Environment ABTERMENC(ABEND)
option. You cannot specify your own abend code via the run-time option.

� Use Language Environment assembler user exit CEEBXITA to force an abend
with your own abend code.

For ZERODIVIDE, OVERFLOW, and SIZE, the ERROR condition is raised if the
condition goes unhandled.

The FOFL condition is not raised for FIXED BIN. It is raised only for FIXED DEC
and decimal PICTURE.

Language Environment provides limited support for OS PL/I IBMBXITA and
IBMBEER. See “Considerations for using assembler user exits” on page 4 for
details.

An UNHANDLED condition of severity 2 or higher now produces an abend U4039
and optionally a system dump if SYSUDUMP or SYSABEND ddname is present. If
ABTERMENC(RETCODE) is in effect, your application continues the termination
with an abend code. If you don't want to see the U4039 abend, Language
Environment provides you the facilities to suppress it.

See “Abnormal Termination Exit” in OS/390 Language Environment Customization
for ways to suppress or change the U4039 abend.

Differences in run-time messages
The format and content of run-time messages are different. If you have
applications that analyze run-time messages, you must change the applications to
allow for the differences. The differences include:

� The message number in the message prefix is four digits instead of three digits
in the form IBMnnnnx, where nnnn represents the message number and x
represents the severity of the message.

� The message severity in the message prefix can be I, W, E, S, or C.

� The message text of some messages has been enhanced.

Details are provided in OS/390 Language Environment Debugging Guide and
Run-Time Messages.

Under Language Environment, run-time messages go to the MSGFILE destination
specified in the run-time option MSGFILE. The default for MSGFILE destination is
SYSOUT. The user output still goes to SYSPRINT. MSGFILE(SYSPRINT) is not
supported under VisualAge PL/I. For more information about the MSGFILE option,
refer to OS/390 Language Environment Programming Guide.

Under Language Environment, run-time messages give offset values that are
relative to the start of the external procedure, rather than relative to the start of the
block that contains the statement. You can use these offsets to help you find the
statement that is in error. To do this, match the offset provided in the message
with the offset given in the pseudo-assembler listing that the compiler produces
when you specify the LIST compile-time option.

 Chapter 5. Run-Time Considerations 19

Differences in PLIDUMP
PLIDUMP now produces a Language Environment-style dump. The way you use
PLIDUMP and the dump output is different. The following list contains the
differences in the way you use PLIDUMP and the output produced. Compile unit
refers to the primary entry point of the external procedure and Compile unit name
refers to the name of the external procedure.

� The ddname of the dump output file can be CEEDUMP, PLIDUMP, or
PL1DUMP. If you do not define one of these files, Language Environment
creates a default CEEDUMP file to contain the dump output. The LRECL of
the dump output file must be at least 133 bytes to prevent dump records from
wrapping, not the 121 bytes required by OS PL/I. If you write the dump output
to the SYSOUT file, make sure you change the default LRECL size of 121 to
133 to prevent from wrapping. Use LRECL of 137 for variable-length files.

� When you use the hexadecimal (H) option of PLIDUMP, you must specify the
ddname CEESNAP; otherwise, no SNAP dump will be produced.

When you specify the hexadecimal (H) option under OS/390, the output from
SNAP includes all system control program information (SDATA=ALL). OS PL/I
provides only partial information (SDATA=CB, Q, and TRT).

� When you use ILC, the dump output contains information related to other
languages (for example, C/C++ or COBOL).

� The identifier character string is limited to 60 bytes rather than the 90 bytes OS
PL/I supported.

� The traceback section lists the compile-unit name associated with each entry
point name. When the entry point is a secondary entry point, the primary entry
point name associated with the actual entry point is not listed.

The traceback section also contains offsets relative to the address of the
compile unit, as well as offsets relative to the address of the real entry point.

� Run-time messages are in a separate section; they are no longer part of the
traceback section.

� When you specify the BLOCK (B) option of PLIDUMP, the condition handler
save areas appear in the block section of the dump. If you do not specify the
BLOCK option of PLIDUMP, the condition handler save areas do not appear in
the dump.

� If the program was compiled with the TEST compile-time option, the BEGIN
blocks that are ON-units are identified as _ON_Begin_line_Blk_number while
other BEGIN blocks are identified as _Begin_line_Blk_number where line is the
line number where the Begin block begins and number is block block for the
begin-block.

� PL/I library routines are identified by name in the dump.

� Assembler routines that conform to the rules for mimicking PL/I routines are
identified by their CSECT names in the dump output.

� PLIDUMP now conforms to National Language Support standards.

� PLIDUMP can supply information across multiple Language Environment
enclaves. For example, if an application running in one enclave FETCHes a
main procedure (an action that creates another enclave), PLIDUMP contains
information about both procedures.

20 Compiler and Run-Time Migration Guide

Differences in run-time options
Language Environment run-time options replace OS PL/I run-time options. Most
OS PL/I run-time options have an equivalent Language Environment run-time
option that provides the same function. This section describes differences in the
use of run-time options.

Pre-Language Environment storage was initialized to zero. By default Language
Environment does not do this and it can be a problem for programs with
uninitialized variables. One way to handle this situation is to use the run-time
option STORAGE by using the third parameter to initialize all storage to zero. Note
that the use of this method has serious performance costs, and modifying the
program so that all variables are initialized is the preferred solution.

You should adapt your applications to allow for the following differences:

� The Language Environment ABTERMENC option controls which type of
return/abend code your application receives at abnormal termination.
ABTERMINC(RETCODE) allows your application to receive a run-time return
code, which is equivalent to the way OS PL/I worked.

� The OS PL/I COUNT option is ignored.

� The Language Environment ERRCOUNT option limits the number of errors that
are handled at run-time. ERRCOUNT(0) specifies that there is no limit, which
is equivalent to the way OS PL/I worked.

� The Language Environment DEPTHCONDLMT option limits the extent to which
conditions can be nested. To maintain compatibility, specify
DEPTHCONDLMT(0), which means there is an unlimited depth.

� The OS PL/I FLOW option is ignored.

� The OS PL/I HEAP option is always in effect. This means that when you
allocate storage for BASED and CONTROLLED variables, the storage always
comes from HEAP storage. The storage does not come from a PL/I Initial
Storage Area (ISA). HEAP(0) is not supported and, if used, is ignored.

� The Language Environment NATLANG option replaces the OS PL/I
LANGUAGE option.

� The Language Environment RPTSTG option replaces the OS PL/I REPORT
option.

� The Language Environment TRAP option replaces both OS PL/I SPIE and
STAE options. The following table shows how the OS PL/I SPIE and STAE
options map to Language Environment's TRAP option:

Note: Applications performing their own condition management often conflict
with Language Environment condition management. See your OS/390

Table 9. Mapping of SPIE and STAE options to the TRAP option

OS PL/I

Language
Environment

Action

SPIE | NOSPIE
STAE | NOSTAE

TRAP(ON,SPIE)
TRAP(OFF)

If either SPIE or STAE is specified or defaulted in input,
TRAP is set to TRAP(ON,SPIE). If both NOSPIE and
NOSTAE are specified, TRAP is set to TRAP(OFF).
TRAP(ON,SPIE) is the recommended setting.

 Chapter 5. Run-Time Considerations 21

Language Environment Programming Guide for more information on
Language Environment condition handling.

� The Language Environment STACK option replaces both OS PL/I ISASIZE and
ISAINC options. You do not need to change source code that contains
ISASIZE and ISAINC. In addition, object modules and/or load modules
containing the PLIXOPT string will run under Language Environment with the
ISASIZE and ISAINC honored as before.

Use STACK(,,ANY) for your VisualAge PL/I application. Your application must
run in AMODE(31) to use STACK(,,ANY).

Under CICS, ALL31(ON) and STACK(,,ANY) are the defaults.

� The Language Environment Environment XUFLOW option determines if the
UNDERFLOW condition is raised when underflow occurs. XUFLOW(AUTO)
preserves PL/I semantics with regard to raising the UNDERFLOW condition.

For more information about run-time options, see the OS/390 Language
Environment Programming Reference.

For OS PL/I applications, the options specified in the PLIXOPT string are
processed as the application-specific options. Do not mix PLIXOPT and
CEEUOPT.

Differences in storage report
The format, contents, and destination of the run-time storage report have changed.
Language Environment provides storage information equivalent to OS PL/I. The
details of storage report is described in OS/390 Language Environment
Programming Reference.

The PLIXHD declaration is no longer used to provide the heading for the run-time
storage report. Instead, use Language Environment's Callable Service, CEE3RPH,
to specify the heading.

Differences in interlanguage communication support
Recompilation of PL/I modules in ILC applications containing OS PL/I or PL/I for
MVS & VM with VisualAge PL/I is recommended.

ILC between VisualAge PL/I and the following languages is not supported:

� Fortran (prior to Language Environment Release 5)
 � OS/VS COBOL
� VS COBOL II Version 1 Release 2 or earlier releases

For more information, see Language Environment for OS/390 & VM Writing
Interlanguage Communication Applications.

Under VisualAge PL/I, all routines are reentrant (even if they modify static
variables). All procedures must be recompiled with VisualAge PL/I.

OPTIONS(COBOL) is treated like OPTIONS(ASM). There is no remapping of
parameters via MAPIN or MAPOUT. This is both a compile-time difference and a
run-time difference, but it will become apparent only at run-time.

22 Compiler and Run-Time Migration Guide

The behavior of certain applications that use ILC might be different. For example:

� Condition handling might behave differently. The major causes of differences
in condition handling are that the INTER option is now ignored, and that PL/I
condition handling facilities can deal with conditions occurring in non-PL/I
routines whether or not you specify INTER.

� Under OS PL/I, in applications that used ILC, the environment initialization and
termination of the involved languages, including PL/I, could occur multiple
times. With Language Environment, there is only one run-time environment,
and language-specific initialization and termination occurs only once. Changes
in behavior that you might see include opening and closing of files, releasing of
allocated storage, and invocation of established ON-units.

Note: If you have designed your own code to manage your run-time
environments, you should remove it as part of your migration efforts.
This private code is incompatible with Language Environment and will
conflict with the run-time environment.

For a complete description of how ILC works in the Language Environment run-time
environment, see Language Environment for OS/390 & VM Writing Interlanguage
Communication Applications.

Differences in assembler support
With VisualAge PL/I, the object module contains the CSECT name CEESTART. It
also contains CEEMAIN if it has OPTIONS(MAIN) or CEEFMAIN if it has
OPTIONS(FETCHABLE). VisualAge PL/I no longer produces PLISTART and
PLIMAIN CSECTs. CEESTART, CEEMAIN, and CEEFMAIN are not supported as
a standard entry point and you cannot call them directly from an assembler
program. You can call CEESTART from an assembler program only when it is a
CSECT name of a VisualAge PL/I routine statically linked with an assembler
program. Therefore, any assembler program mimicking a OS PL/I main procedure
(calling PLISTART directly as a standard entry point), must continue to use
PLISTART under Language Environment.

With Language Environment, assembler programs that call a PL/I routine must
follow the calling conventions defined by Language Environment. For example,
Register 13 pointing to a save area, save areas properly back-chained, and the first
word of the save area being zero. For detailed information, see OS/390 Language
Environment Programming Guide.

If your OS PL/I main program is called by an assembler program and you want to
convert your assembler program to use Language Environment-conforming
assembler, you must recompile your OS PL/I program with VisualAge PL/I without
OPTIONS(MAIN). The called VisualAge PL/I program is treated as a subroutine
and runs under the same Language Environment enclave where the assembler
program is the main program and the called VisualAge PL/I program is a
subroutine.

Your Language Environment-conforming assembler main program must explicitly
include the Language Environment-VisualAge PL/I signature CSECT, CEESG011,
when calling a PL/I subroutine to ensure the Language Environment-PL/I-specific
run-time environment is initialized. There are three ways Language

 Chapter 5. Run-Time Considerations 23

Environment-conforming assembler routines can pass control to a VisualAge PL/I
subroutine:

1. Branch to a statically-linked VisualAge PL/I subroutine.

2. Use the Language Environment macro CEEFETCH to branch to a
separately-linked VisualAge PL/I subroutine.

3. Use assembler instructions such as LOAD and BALR to branch to a
separately-linked VisualAge PL/I subroutine.

When you use method 1 or 2 with VisualAge PL/I, you don't need to include
CEESG011 with your assembler program. If your assembler program uses
instructions as described in method 3, you must always include CEESG011 with
your assembler program.

Condition handling of the LINK from assembler is now clearly defined. For detailed
information, see OS/390 Language Environment Programming Guide and
VisualAge PL/I Programming Guide.

Differences in language element behavior
There are also some language elements that can cause your program to run
differently under VisualAge PL/I than it does under PL/I for MVS & VM due to
differences in the hardware or in the implementation of the language by the
compiler. Each of the following items is described in terms of its VisualAge PL/I
behavior.

FIXED BIN(p) maps to one byte if p <= 7
If you have any variables declared as FIXED BIN with a precision of 7 or less,
they occupy one byte of storage under VisualAge PL/I instead of two as under
PL/I for MVS & VM and earlier. If the variable is part of a structure, this usually
changes how the structure is mapped, and that could affect how your program
runs. For example, if the structure were read in from a file created on the
mainframe, fewer bytes would be read in on the workstation than would be on
the mainframe.

To avoid this difference, you could change the precision of the variable to a
value between 8 and 15 (inclusive).

INITIAL attribute for AREAs is ignored
To keep VisualAge PL/I products from ignoring the INITIAL attribute for AREAs,
convert INITIAL clauses into assignment statements.

For example, in the following code fragment, the elements of the array are not
initialized to a1, a2, a3, and a4:

dcl (a1,a2,a3,a4) area;
dcl a(4) area init(a1, a2, a3, a4);

However, you can rewrite the code as follows so that the array is initialized as
desired:

dcl (a1,a2,a3,a4) area;
dcl a(4) area;

a(1) = a1;
a(2) = a2;
a(3) = a3;
a(4) = a4;

24 Compiler and Run-Time Migration Guide

ADD, DIVIDE, and MULTIPLY do not return scaled FIXED BIN
Under the RULES(IBM) compile-time option, which is the default, variables can
be declared as FIXED BIN with a nonzero scale factor. Infix, prefix, and
comparison operations are performed on scaled FIXED BIN as with the
mainframe. However, when the ADD, DIVIDE, or MULTIPLY built-in functions
have arguments with nonzero factors or specify a result with a nonzero scale
factor, the VisualAge PL/I, PL/I for MVS & VM and earlier compilers evaluate
the built-in function as FIXED DEC rather as FIXED BIN as the mainframe
compiler.

For example, the workstation compilers would evaluate the DIVIDE built-in
function in the assignment statement below as a FIXED DEC expression:

dcl (i,j) fixed bin(15);
dcl x fixed bin(15,2);

...
x = divide(i,j,15,2);

Differences in Descriptor Format
The descriptor format in VisualAge PL/I is different from previous versions of PL/I.
The CMPAT(V2) and CMPAT(V1) compiler options are available to cause
VisualAge PL/I to use the previous descriptor format. This is particularly useful, for
example, in applications where DB2 passes strings to VisualAge PL/I, or where
Assembler programs pass descriptors in the previous format, or where Assembler
programs directly read and expect the old descriptor format.

Differences in AMODE(24) Support
 AMODE(31) and RMODE(ANY) are the default settings for the VisualAge PL/I
application. Amode(24) applications are only supported for compatibility reasons. To
use the AMODE(24) feature, the application program has to be compiled with the
PL/I compiler option NORENT and run with the Language Environment option
ALL31(OFF).

 Chapter 5. Run-Time Considerations 25

Chapter 6. Tuning your VisualAge PL/I program

After you migrate to Language Environment, you should retune your applications to
maximize the performance. When you retune an application, it is not always
possible to maximize CPU and storage at the same time. Often you will find that,
in order to obtain better CPU, you need to use more storage, or vice versa. This
chapter provides general tips to help you to retune your applications under
Language Environment.

For more information on tools you can use to improve performance for your
applications, see OS/390 Language Environment Customization or OS/390 V2R8
Language Environment Customization, and VisualAge PL/I for OS/390
Programming Guide.

Improving CPU utilization
The following discussion shows ways to help you obtain better CPU utilization:

� Reduce the number of GETMAINs and FREEMAINs issued by Language
Environment.

Use the Language Environment RPTSTG(ON) option to produce the storage
report. Specify the reported storage amount in the corresponding Language
Environment storage run-time options.

� Reduce the number of LOADs and DELETEs issued by Language
Environment.

Put the commonly used Language Environment library routines in (E)LPA. The
following lists the recommended candidates for VisualAge PL/I:

 – CEEBINIT (LPA)
 – CEEPLPKA (ELPA)
 – CEEEV011 (ELPA)

See OS/390 Language Environment Customization for a complete list of library
routines that can be put in (E)LPA.

� Avoid AMODE switching between library routines.

Use AMODE(31) for your application, if possible, so you can specify Language
Environment ALL31(ON) option. If ALL31(ON) is in effect, there is no AMODE
switching among library routines.

Avoid the following PL/I conditions because they might cause a slower
performance to your application:

 – STRINGSIZE
 – AREA
 – OVERFLOW

� Use DFSMS-provided system-determined BLKSIZE.

On OS/390, use BLKSIZE(0) for an output file that can be blocked. DFSMS
determines the optimal block size for you which can improve the file
performance.

� Use Language Environment Library Routine Retention facility (LRR).

26 Copyright IBM Corp. 1964, 2000

You can get a better CPU performance if you use LRR. When LRR is used,
Language Environment keeps certain Language Environment resources in
storage when an application ends. Subsequent invocations of programs that
use LRR is much faster because the Language Environment resources left in
storage are reused.

For example, you can use LRR for your IMS/DC environment to improve
performance.

Note that because LRR leaves LE resources in the storage for a long period of
time, you must assess your storage availability to accommodate the situation.

Improving storage utilization
The following discussion helps you to obtain better storage utilization:

� Use Language Environment option HEAP(,,ANY) option, if possible.

For VisualAge PL/I, Language Environment will allocate the heap storage
above the 16M line if the following is true:

– The requestor is in AMODE(31)
– HEAP(,,ANY) is in effect
– The main program is in AMODE(31)

� Use Language Environment STACK(,,ANY) option, if possible.

Your application must be in AMODE(31). Language Environment allocates the
stack storage above the 16M line when your application is recompiled with
VisualAge PL/I and linked with Language Environment.

� Reduce the IBM-supplied default values in Language Environment storage
options.

If you use a smaller value, Language Environment will allocate less storage
each time, but it could result in more GETMAINs and FREEMAINs being
issued.

� Put commonly used Language Environment library modules in (E)LPA.

The library routines in (E)LPA do not occupy storage in your application region,
so your application has more storage to use. See the recommended library
routines for (E)LPA in “Improving CPU utilization” on page 26.

Improving performance under subsystems
The following discussion helps you to obtain better performance under specific
subsystems:

 � Under CICS

Use the PL/I FETCH/CALL statement instead of EXEC CICS LINK. The PL/I
FETCH/CALL statement has a much shorter path length than the path length of
EXEC CICS LINK.

 � Under IMS

Use Language Environment Library Routine Retention (LRR) facility to reduce
the number of LOADs/DELETEs and GETMAINs/FREEMAINs issued by
Language Environment for each transaction.

 Chapter 6. Tuning your VisualAge PL/I program 27

Preload commonly used Language Environment library modules and frequently
used top-level applications.

28 Compiler and Run-Time Migration Guide

 Chapter 7. Subsystem considerations

This chapter discusses subsystem-specific considerations that you need to know
when you migrate your applications running under CICS, IMS, and DB2.

 CICS considerations
Language Environment provides the same level of OS PL/I object and load module
support as for non-CICS, if you are running your OS PL/I or PL/I for MVS & VM
programs with Language Environment. Before running VisualAge PL/I with
Language Environment, you must first recompile and relink your source code.

The CICS Storage Protect facility was introduced under CICS 3.3. This provides
more data integrity and security for the application program and especially for the
entire CICS region. Because of the new feature, you might discover that some of
the successfully running OS PL/I applications start to fail with ASRA(0C4) abend
and the CICS message DFHSR0622.

If the above problem is happening in your VisualAge PL/I application program, set
the CICS system initialization parameter RENTPGM=NOPROTECT. This sets the
protection of the user program in user key. The default for RENTPGM is
PROTECT.

If the stream output function is used in your OS PL/I CICS application, especially
the PUT DATA statement, it might trigger the above error. PL/I stream output
function is intended for debugging purposes only. For performance reasons, we
recommend that you don't use it in production programs.

Updating CICS System Definition (CSD) file
When you bring up a CICS region with Language Environment, you must ensure
the module names listed in Language Environment CEECCSD are defined in the
CSD. You can locate CEECCSD in SCEESAMP. If you use CICS Version 4
autoinstall facility, you do not need to define Language Environment modules
manually in the CSD.

In order to run a VisualAge PL/I CICS application, you need to define the VisualAge
PL/I member event handler CEEEV011 in the CICS CSD definition table:

DEFINE PROGRAM(CEEEV:11) GROUP(CEE) LANGUAGE(ASSEMBLER)

 Macro-level interface
The CICS macro-level interface is not supported.

SYSTEM(CICS) compile-time option
If you compile with SYSTEM(CICS) compile-time option, PL/I enforces the
OPTIONS(BYVALUE) procedure option for MAIN procedures.
OPTIONS(BYVALUE) is the default. If you specify OPTIONS(BYADDR), the
compiler diagnoses it as an error and applies OPTIONS(BYVALUE) instead.

 Copyright IBM Corp. 1964, 2000 29

FETCHing a PL/I MAIN procedure
CICS does not support PL/I FETCHing in a PL/I MAIN procedure.

STACK run-time option
Language Environment supports VisualAge PL/I applications that use the run-time
option STACK(,,ANY). Language Environment also supports STACK(,,ANY) for OS
PL/I applications that have been relinked with Language Environment as long as
the applications meet the following conditions:

� Contains no edited stream I/O (for example, EDIT was not used in a PUT
statement)

 � Specifies AMODE(31)

 Run-time output
Run-time output is now transmitted to the CICS transient data queue CESE.
Language Environment ignores the MSGFILE option under CICS. Figure 1 shows
format of the output data queue.

┌────┬─────────┬───────────┬──┬───────────────┬──┬──────┐
│ │Terminal │Transaction│B │ DateTime │B │Data │
│ASA │ id │ id │ │ YYYYMMDDHHMMSS│ │ │
│ │ │ │ │ │ │ │
└────┴─────────┴───────────┴──┴───────────────┴──┴──────┘

Figure 1. CESE output data queue

In addition, PL/I transient queues CPLI and CPLD are no longer used. As a result,
you do not need to specify entries for the CPLI and CPLD in the CICS Destination
Control Table (DCT).

Abend codes used by PL/I under CICS
The APLx abend codes that were issued under OS PL/I Version 2 are no longer
issued. Instead, Language Environment-defined abend codes are issued. For
more information about Language Environment abend codes, see OS/390
Language Environment Debugging Guide and Run-Time Messages.

Linking VisualAge PL/I applications
You are no longer required to take special actions when you link a VisualAge PL/I
object module under CICS. The CEESTART CSECT is the entry point for
programs compiled with OPTIONS(MAIN) or OPTIONS(FETCHABLE). If a
subroutine that was not compiled with OPTIONS(FETCHABLE) is FETCHed or
called, you must code the linkage editor ENTRY statement so that it nominates the
actual entry point.

 IMS considerations

30 Compiler and Run-Time Migration Guide

Interfaces to IMS
Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces
from a PL/I routine. It also supports CEETDLI interface from a VisualAge PL/I
routine running under IMS/ESA Version 4.

Under Language Environment, CEETDLI is the recommended interface. CEETDLI
supports calls that use an Application Interface Block (AIB) or a Program
Communication Block (PCB). CEETDLI is available under IMS/ESA Version 4. For
more information about AIB and a complete description of the CEETDLI interface,
see IMS/ESA Version 4 Application Programming Guide.

When you recompile your PL/I routine with VisualAge PL/I and you want to replace
PLITDLI with CEETDLI, you must replace the parameters in the CALL statement
with the actual blocks, instead of the pointer to the blocks as required in the CALL
PLITDLI statement.

SYSTEM(IMS) compile-time option
The SYSTEM(IMS) option, available in OS PL/I Version 2, was supported for PL/I
IMS applications only. The main procedure of an IMS application must use the
POINTER data type for its parameters.

When you recompile your main procedure with VisualAge PL/I, the object module
assumes that the parameters are passed as BYVALUE. Language Environment
converts the parameters to the BYVALUE style for you, if necessary, so the
parameters are always passed correctly. If you specify OPTIONS(BYADDR) when
you recompile your main procedure with VisualAge PL/I, you receive an error
message and the compiler applies BYVALUE instead.

PLICALLA Support in IMS
The OS PL/I PLICALLA entry point is supported under Language Environment;
however, it is not a recommended interface for IMS. Instead, use the
SYSTEM(IMS) compile-time option and the CEESTART entry point.

Language Environment provides the same support for OS PL/I PLICALLA
applications; however, when you recompile your main load module with VisualAge
PL/I and want to continue to use PLICALLA, you must follow additional rules. See
“PLICALLA considerations” on page 13 for details.

PSB language options supported
Language Environment supports PL/I applications with the following PSBGEN
LANG options in the supported releases of IMS:

IMS/ESA Version 4
Table 10 shows support for PSB LANG options in IMS/ESA Version 4.

Table 10 (Page 1 of 2). PSB LANG options for IMS/ESA Version 4 Release 1

SYSTEM option Entry point LANG=

IMS CEESTART PLI or other values except
PASCAL

IMS PLICALLA1 PLI

Omitted CEESTART Illegal

 Chapter 7. Subsystem considerations 31

IMS/ESA Version 3 Re1ease 1
Table 11 shows support for PSB LANG options in IMS/ESA Version 3
Release 1.

Table 10 (Page 2 of 2). PSB LANG options for IMS/ESA Version 4 Release 1

SYSTEM option Entry point LANG=

Omitted PLICALLA1 PLI

Note: 1Supported only for compatibility.

Table 11. PSB LANG options for IMS/ESA Version 3 Release 1

SYSTEM option Entry point LANG=

IMS CEESTART PLI

IMS PLICALLA1 PLI

Omitted CEESTART Illegal

Omitted PLICALLA1 PLI

Note: 1Supported only for compatibility.

Assembler driving a PL/I transaction
If an assembler program is driving a transaction program written in PL/I, and
assuming the PSBGEN LANG= option remains unchanged, you must use the
SYSTEM(MVS) compile-time option when you recompile the PL/I main program
with VisualAge PL/I. In this case, no changes to the assembler program are
required.

Storage usage considerations
With IMS/ESA Version 3 Release 1, the parameters passed to the IMS interfaces
are no longer restricted to the area below the 16M line. The parameters will most
likely be placed above the 16M line if you use the following methods:

� Use the ANYWHERE suboption of the HEAP run-time option. It applies to
variables with the CONTROLLED or BASED attribute because their storage is
obtained from the heap.

� Use the ANYWHERE suboption of the STACK run-time option. If you relink
your OS PL/I application with Language Environment and your application does
not use any edited stream I/O, or you recompile your application with VisualAge
PL/I, you can use STACK(,,ANYWHERE) if your application is AMODE(31). In
this case, the variables in automatic storage are placed above the 16M line.

� Place parameters in static storage and make sure the load module attribute
used is AMODE(31).

Coordinated condition handling under IMS
Language Environment and IMS condition handling is coordinated, meaning that if
a program interrupt or abend occurs when you application is running in an IMS
environment, the Language Environment condition manager is informed whether
the problem occurred in your application or in IMS. If the problem occurs in IMS,
Language Environment, as well as any invoked HLL-specific condition handler,
percolates the condition back to IMS.

32 Compiler and Run-Time Migration Guide

With Language Environment run-time option TRAP(ON), Language Environment
continues to support coordinated condition handling for the PLITDLI and ASMTDLI
interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or IMS/ESA Version 4, Language
Environment also supports the coordinated condition handling for CEETDLI, CTDLI
from a C routine, CBLTDLI from a COBOL program, AIBTDLI from a PL/I program,
and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of IMS,
or if a software condition of severity 2 or greater is raised outside of IMS, the
Language Environment condition manager takes normal condition handling actions
described in OS/390 Language Environment Programming Guide. In this case, in
order to give IMS a chance to do database rollback, you must do one of the
following:

� Resolve the error completely so that you application can continue.

� Issue a rollback call to IMS, and then terminate the application.

� Make sure that the application terminates abnormally by using the
ABTERMENC(ABEND) run-time option to transform all abnormal terminations
into system abends in order to cause IMS rollbacks.

� Make sure that the application terminates abnormally by providing a modified
assembler user exit (CEEBXITA) that transforms all abnormal terminations into
system abends in order to cause IMS rollbacks.

The assembler user exit you provide should check the return code and reason
code or the CEEAUE_ABTERM bit, and requests an abend by setting the
CEEAUE_ABND flag to ON, if appropriate. See OS/390 Language
Environment Programming Guide for details.

Performance enhancement with Library Retention(LRR)
If you use LRR, you can get an improvement in performance. See “Improving CPU
utilization” on page 26 for details.

 DB2 considerations
There are no special considerations for using DB2 other than the considerations
described in “IMS considerations” on page 30.

 Chapter 7. Subsystem considerations 33

Chapter 8. OS PL/I coexistence with Language Environment

This chapter discusses how you can run your OS PL/I applications under either OS
PL/I or Language Environment. This coexistence gives you the flexibility to migrate
your OS PL/I applications to VisualAge PL/I and/or Language Environment
gradually. It's important that you understand how Language Environment supports
OS PL/I object and load modules before you consider the coexistence. For rules
and information on Language Environment's support of OS PL/I object and load
modules, see chapter on object and load modules in the PL/I for MVS & VM
Compiler and Run-Time Migration Guide.

Coexistence under OS/390 non-CICS
Under OS/390, Language Environment can coexist with the OS PL/I library in the
same SMP/E zone. This enables you to have the Language Environment and OS
PL/I library in your environment at the same time and allows you to use either
run-time by specifying each library in a certain order in your JCL. Which run-time is
used depends on the sequence in which they appear in your JCL and what type of
application you are running.

The following library search order rules apply to non-CICS applications and are
valid only for pure PL/I applications with the same type of load modules.

If a pure PL/I application contains a mixture of PL/I load modules, the OS PL/I
library and Language Environment library must appear in such order that only one
run-time environment is used by all load modules in the application. For example,
if a PL/I application contains a mixture of any of the following load modules:

� OS PL/I load module, no Shared Library

Table 12. OS PL/I and Language Environment coexistence rules for non-CICS environment

Type of load module Search sequence Run-time used

OS PL/I load module,
no Shared Library

1. OS PL/I
2. Language Environment

OS PL/I

1. Language Environment
2. OS PL/I

Language Environment

OS PL/I load module,
with OS PL/I
Shared Library

1. OS PL/I
2. Language Environment

OS PL/I

1. Language Environment
2. OS PL/I

Not supported

OS PL/I load module,
with replaced
Shared Library

1. OS PL/I
2. Language Environment

Not supported

1. Language Environment
2. OS PL/I

Language Environment

OS PL/I object module,
linked with
Language Environment

1. OS PL/I
2. Language Environment

Language Environment

1. Language Environment
2. OS PL/I

Language Environment

VisualAge PL/I 1. OS PL/I
2. Language Environment

Language Environment

1. Language Environment
2. OS PL/I

Language Environment

34 Copyright IBM Corp. 1964, 2000

� OS PL/I object module, linked with Language Environment

� VisualAge PL/I load module

Language Environment must always be placed before the OS PL/I library in the
search order.

If your application contains ILC, the search order of Language Environment must
be correct for all ILC programs in the application.

Coexistence under OS/390 CICS
CICS allows multiple language run-time environments to coexist in the same CICS
region. As a result, you can bring up the CICS region with both OS PL/I and
Language Environment; however, if Language Environment exists and PL/I in
Language Environment is enabled, Language Environment is used for all PL/I
transactions, including OS PL/I. It is only when Language Environment does not
exist, or the PL/I component in Language Environment is not enabled, that the OS
PL/I environment is used for OS PL/I transactions. In this case, you cannot run
VisualAge PL/I transactions because it requires Language Environment with the
PL/I component enabled. The following table summarizes the coexistence support
for OS PL/I transactions:

The following shows how you can disable the PL/I component from Language
Environment:

� If the CICS region is not up, do the following:

– Delete CEEEV011 module from CEECCSD located in Language
Environment SCEESAMP.

– Run the DFHCSDUP utility with CEECCSD.

� If the CICS region is up, do the following:

– CEDS DELETE PROGRAM(CEEV011), bring down CICS, and start CICS
cold.

You must concatenate OS PL/I in front of Language Environment SCEERUN in
DFHRPL in order to use the OS PL/I environment.

Table 13. Summary of coexistence support under OS/390 CICS

PPT OS PL/I Language Environment Environment Used

PLI Yes Yes, with PL/I enabled Language Environment

PLI Yes Yes, without PL/I enabled OS PL/I

PLI No Yes, with PL/I enabled Language Environment

PLI No Yes, without PL/I enabled Abend APCL

LE370 Yes Yes, with PL/I enabled Language Environment

LE370 Yes Yes, without PL/I enabled Abend APCL

LE370 No Yes, with PL/I enabled Language Environment

LE370 No Yes, without PL/I enabled Abend APCL

 Chapter 8. OS PL/I coexistence with Language Environment 35

Coexistence under DB/2
If you write a user-defined function in PL/I for MVS & VM or OS PL/I, DB/2 passes
some string-locator descriptors to the PL/I procedure. These descriptors have a
different format than the descriptors used by VisualAge PL/I. In order for PL/I to
interpret them correctly, the PROCEDURE statement must specify
OPTIONS(CMPAT) if you declare any of these string parameters with an asterisk
(*) for its length, as shown in the following example:

udf: proc(a, b, c) options(cmpat);

dcl (a,b,c) char(,) varying;

This is also true for any assembler code passing string-locator descriptors to PL/I.

36 Compiler and Run-Time Migration Guide

 Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
 Armonk, NY 10504-1785
 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 IBM Corporation
 J74/G4

 Copyright IBM Corp. 1964, 2000 37

555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming interface information
This book is intended to help the customer migrate from previous releases of PL/I
to VisualAge PL/I and OS/390 V2R8 Language Environment. This publication
documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of VisualAge PL/I.

 Trademarks
The following terms are registered trademarks or trademarks of the IBM
Corporation in the United States or other countries or both:

Windows is a trademark of Microsoft Corporation in the United States and/or other
countries.

AIX
CICS
CICS/ESA
DB2
DFSMS
DFSORT
IBM

IMS
IMS/ESA
Language Environment
OS/2
OS/390
VisualAge

38 Compiler and Run-Time Migration Guide

 Bibliography

 Copyright IBM Corp. 1964, 2000 39

 Bibliography

VisualAge PL/I publications
Fact Sheet, GC26-9470
Programming Guide, SC26-9473
Language Reference, SC26-9476
Messages and Codes, SC26-9478
Diagnosis Guide, SC26-9475
Compiler and Run-Time Migration Guide,
SC26-9474
Installation and Customization, GC26-9472
Building Graphical User Interfaces on OS/2,
GC26-9180-01

DB2 Version 2
Information and Concepts Guide, S20H-4664

Administration Guide, S20H-4580

Database System Monitor Guide and Reference,
S20H-4871

Command Reference, S20H-4645

API Reference, S20H-4984

SQL Reference, S20H-4665

Application Programming Guide, S20H-4643

Call Level Interface Guide and Reference,
S20H-4644

Messages Reference, S20H-4808

Problem Determination Guide, S20H-4779

DDCS User's Guide, S20H-4793

DRDA Connectivity Guide, SC26-4783

 DATABASE 2
Application Programming and SQL Guide,
SC26-4377

SQL Reference, SC26-4380

VisualAge CICS Enterprise
Application Development
 Installation, GC34-5356

 Customization, SC34-5357

 Operation, SC34-5358

Reference Summary, SX33-6109

 Intercommunication, SC34-5359

Problem Determination, GC34-5360

 Performance, SC34-5363

Application Programming, SC34-5361

40 Copyright IBM Corp. 1964, 2000

 Index

A
abend codes

CICS considerations 30
AREAs and INITIAL attribute 24
array expressions restriction 7
ASMTDLI IMS interface 31
assembler driving PL/I transaction, IMS

considerations 32
assembler invocation of PL/I 23
assembler language options, IMS considerations 31
assembler support

PLIMAIN entry point 23
PLISTART entry point 23

assembler user exits
specific considerations 4

B
batch restrictions 9
built-in function restriction 9

C
CEEBXITA user exit 4
CEESTART, using 23
CICS considerations

abend codes used by PL/I 30
CSD file, updating 29
discussion of 29
linking VisualAge PL/I applications 30
macro-level interface 29
run-time output 30
STACK run-time option, using 30
SYSTEM compile-time option 29

coexistence, OS PL/I with Language
Environment 34—36

under DB/2 36
under OS/390 CICS 35
under OS/390 non-CICS 34

compatibility considerations 6
PLICALLA entry point 13
PLICALLB entry point 14

compile unit definition 20
compile-time considerations 5—11

installing Language Environment 5
mixing object levels 5
storage reports 10

compiler messages 10
discussion of changes 10

condition handling
IMS considerations 32

Condition Handling Differences 17
considerations

before migrating
Condition Handling 17
DATE/TIME built-in functions 16
ILC differences 22
OS PL/I coexistence with Language

Environment 34
PLIDUMP 20
preinitialized program 16
run-time message 19
run-time options 21
storage report 22
user return code 17

compile-time 5
installation

High-Level Language user exit 4
OS/390 requirements 3
product configuration 3
product configuration, SCEELKED 3
product configuration, SCEERUN 3

link-edit
ENTRY CEESTART requirement 12
PLICALLA and PLICALLB 12
using FETCH 12

Run-Time 13
subsystem

CICS 29
DB2 33
IMS 30

COUNT run-time option 21
CPU utilization, improving 26
CSD file, updating 29

D
data sets

new, OS/390 3
DATE/TIME built-in functions 16
DB2 considerations 33
DBCS restriction 8
DEFINED variable restriction 8
DEPTHCONDLMT run-time option 21
Descriptors clause 10

E
ENTRY statement restriction 7
ERRCOUNT run-time option 21
EXEC DLI interface 31

 Copyright IBM Corp. 1964, 2000 41

F
FETCH

considerations for 12
FIXED

BINARY, mapping and portability 24
FLOW run-time option 21

H
HEAP run-time option 21
High-Level Language user exits, using 4

I
IBMBEER user exit, installation considerations 4
IBMBXITA user exit 4
IBMFXITA user exit 4
ILC (interlanguage communication)

differences in 22
enabled languages 22

IMS considerations
assembler driving PL/I transaction 32
assembler language options support 31
condition handling 32
discussion of 30
interfaces 31
interfaces to 31
PLICALLA support 31
PSB language options 31
storage usage 32
SYSTEM compile-time option 31

INITIAL attribute 24
installation considerations

user exits 4
installing Language Environment, compile-time

considerations 5
interlanguage communication (ILC)

differences in 22
enabled languages 22

introduction
Language Environment library 2
PL/I run-time environment 1
user information 1
VisualAge PL/I for OS/390 library 2

ISASIZE run-time option 21

L
Language Environment library 2
LANGUAGE run-time option 21
link-edit considerations

ENTRY CEESTART requirement 12
FETCH 12
using FETCH

discussion of 12
using PLICALLA entry 12

link-edit considerations (continued)
using PLICALLB entry 12

linking applications under CICS 30

M
macro-level interface, CICS considerations 29
messages

compiler 10
PLIXOPT string errors

discussion of 10
mixing object levels, compile-time considerations 5

N
NOMAP 10
notices 37

O
OS PL/I

version 1
source code compatibility 6

P
performance

CPU utilization 26
retuning for 26
storage utilization 27
under CICS, improving 27
under IMS, improving 27

PL/I dependency on Language Environment 5
PL/I mixing object levels 5
PLICALLA Entry Point

IMS considerations 31
passing parameters 14
Support for 13

PLICALLB entry point
passing parameters 16
support for 14

PLIDUMP
output produced by 20

PLIDUMP differences 20
PLIMAIN entry point 23
PLISTART entry point 23
PLITDLI IMS interface 31
PLIXOPT string

messages issued
discussion of 10

portability
language elements 24

preinitialized program 16
product configuration

data sets
new 3
OS/390 3

42 Compiler and Run-Time Migration Guide

product configuration (continued)
discussion of 3

programs, preinitialized 16
PSB language options, IMS considerations 31
pseudovariable restriction 9

R
record I/O restriction 9
REPORT run-time option 21
restrictions under VisualAge PL/I 6
retuning applications

CPU utilization 26
storage utilization, improving 27
under IMS, improving 27

run-time
behavior differences

Amode(24) Support. 25
Descriptor Format 25
INITIAL attribute for AREAs is ignored 24
language elements 24
using variables declared as FIXED BIN 24

run-time environment for PL/I 1
run-time message differences 19
run-time options differences 21
run-time output, CICS considerations 30

S
SCEELKED configuration 3
SCEERUN configuration 3
SPIE run-time option 21
STACK run-time option 21, 30
STAE run-time option 21
storage

reports, compile-time considerations 10
usage

IMS considerations 32
retuning for 26

storage report differences 22
storage utilization, improving 27
stream I/O restrictions 8
structure expression restriction 8
subsystem considerations

CICS 29
DB2 33
IMS 30

subsystem performance, improving 27
SYSTEM compile-time option

CICS considerations 29
IMS considerations 31

T
TRAP run-time option 21

U
user exits

assembler
specific considerations 4

CEEBINT 4
CEEBXITA 4
High-Level Language 4
IBMBEER 4
IBMBXITA 4
IBMFXITA 4
installation considerations 4

user return code differences 17

V
VisualAge PL/I library 2

 Index 43

We'd Like to Hear from You

IBM VisualAge PL/I for OS/390
Compiler and Run-Time Migration Guide
Version 2 Release 2.1

Publication No. SC26-9474-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

IBM VisualAge PL/I for OS/390
Compiler and Run-Time Migration Guide
Version 2 Release 2.1

Publication No. SC26-9474-02

How satisfied are you with the information in this book?

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-9474-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-9474-02

IBM

Program Number: 5655-B22

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

Common VisualAge PL/I Library

SC26-9476 Language Reference

VisualAge PL/I for OS/390 Library

GC26-9471 Licensed Program Specifications
SC26-9473 Programming Guide
SC26-9474 Compiler and Run-Time Migration Guide
SC26-9475 Diagnosis Guide
SC26-9478 Compile-Time Messages and Codes

VisualAge PL/I Enterprise Version 2.1 Library

GC26-9178 Language Reference (OS/2 and Windows)
GC26-9177 Programming Guide (OS/2 and Windows)
GC26-9179 Messages and Codes (OS/2 and Windows)
GC26-9180 Building Graphical User Interfaces on OS/2

SC26-9474-:2

S
pine inform

ation:

IB
M

IB
M

 V
isualA

ge P
L

/I for O
S/390

C
om

piler and R
un-T

im
e M

igration G
uide

V
ersion 2 R

elease 2.1

	Contents
	Chapter 1. Introduction
	Run-time environment for VisualAge PL/I
	Using your documentation
	PL/I information
	Language Environment information

	Chapter 2. Installation considerations
	Product information
	Considerations for using assembler user exits
	Specific considerations

	Considerations for using high-level language user exits

	Chapter 3. Compile-time considerations
	Mixing Object Levels
	Dependency on Language Environment
	Compile-time options not supported by VisualAge PL/I
	Compatibility considerations and restrictions
	OS PL/I Version 1 source code
	ENTRY statement
	Array expressions
	Structure expressions
	DEFINED variables
	DBCS
	Stream I/O
	Record I/O
	Built-in functions
	Batch compilations
	Miscellaneous unsupported elements

	Storage report changes
	Compiler messages
	Messages that PL/I issues for errors in the PLIXOPT string

	Chapter 4. Link-edit considerations
	Using FETCH in your routines
	Using PLICALLA or PLICALLB entry
	ENTRY CEESTART requirement

	Chapter 5. Run-Time Considerations
	Differences in PLICALLA and PLICALLB Support
	PLICALLA considerations
	Passing parameters

	PLICALLB considerations
	Passing parameters

	Differences in preinitialization support
	Differences in DATE/TIME built-in functions
	Differences in user return codes
	Differences in Condition Handling
	Differences in run-time messages
	Differences in PLIDUMP
	Differences in run-time options
	Differences in storage report
	Differences in interlanguage communication support
	Differences in assembler support
	Differences in language element behavior
	Differences in Descriptor Format
	Differences in AMODE(24) Support

	Chapter 6. Tuning your VisualAge PL/I program
	Improving CPU utilization
	Improving storage utilization
	Improving performance under subsystems

	Chapter 7. Subsystem considerations
	CICS considerations
	Updating CICS System Definition (CSD) file
	Macro-level interface
	SYSTEM(CICS) compile-time option
	FETCHing a PL/I MAIN procedure
	STACK run-time option
	Run-time output
	Abend codes used by PL/I under CICS
	Linking VisualAge PL/I applications

	IMS considerations
	Interfaces to IMS
	SYSTEM(IMS) compile-time option
	PLICALLA Support in IMS
	PSB language options supported
	Assembler driving a PL/I transaction
	Storage usage considerations
	Coordinated condition handling under IMS
	Performance enhancement with Library Retention(LRR)

	DB2 considerations

	Chapter 8. OS PL/I coexistence with Language Environment
	Coexistence under OS/390 non-CICS
	Coexistence under OS/390 CICS
	Coexistence under DB/2

	Appendix. Notices
	Programming interface information
	Trademarks

	Bibliography
	Bibliography
	VisualAge PL/I publications
	DB2 Version 2
	DATABASE 2
	VisualAge CICS Enterprise Application Development

	Index

